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ABSTRACT iA
We study the ,nonlinear Volterra integrodifferential equation

du + B~)+aut
+ But- *A~)+ (b*u(t)) 8 F(t) a.e. on R Kf

dt dt

u () u u Ion

A, B are nonlinear operators, a, bp F are functions defined o (0,in),

denotes the convolution on (O,tJ, and uo is a given element. Under

various assumptions motivated by heat flow in materials with memory results on

existence of solutions are obtained, -.ollowed by various results on bounded-

ness and the asymptotic behaviour of solutions as with applications

to such heat flow problems.-
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SIGNIFICANCE AND EXPLANATION

Consider nonlinear heat flow in a homogeneous bar of unit length of a

material with memory with the ends of the rod maintained at zero temperature

and with the history of temperature prescribed for time t ( 0. For such

materials the internal energy and heat flux are functionals (rather than

functions) of the temperature and of the gradient of temperature respectively.

Under physically reasonable constitutive assumptions for these, generally

nonlinear, functionals application of the law of balance of heat leads to a

nonlinear Volterra integrodifferential equation, derived in Section 6 (see

equation (6.4)), together with appropriate boundary and initial conditions,

which model the physical problem. This mathematical model problem, which can-

not be solved explicitly and which is difficult to analyse, can be transformed

by standard methods to the general nonlinear integrodifferential equation

given in the Abstract. The resulting kernels a and b can be expressed in

terms of the internal energy and heat flux relaxation functions which are

presumed to be known for the physical problem. The operators A and B are

"* nonlinear differential operators which incorporate the boundary conditions,

and the forcing term F depends on the given initial temperature

*distribution, the given external heat supply, and the given history of

temperature. In previous studies it was either assumed that the operators

A and B are equal or that the kernel b i 0, or both. The problem as

formulated in this paper appears to model the general physical situation more

accurately, although admittedly the experimental evidence for theories of heat

flow in materials with memory is rather sparce.

Under physically reasonable assumptions motivated by this physical

problem we establish existence of global solutions, followed by a rather

complete description of the qualitative behaviour of such solutions, including

boundedness and decay as t + -i the approach to equilibrium states (other

than zero) as t + - is also analysed. These results are obtained for the

abstract evolution equation (using techniques of monotone operator theory

combined with energy methods and the theory of Volterra operators), and then

interpreted and applied to the physical problem. A comparison with other

results in the literature is also given.

The responsibility for the wording and views expressed in this descriptive
suimary lies with MRC, and not with the authors of this report.
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A NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION
OCCURRING IN HEAT FLOW

S.-O. Londen 11 1 and J. A. Nohel
(2 )

1. Introduction and Discussion of Results. We study the nonlinear Volterra

integrodifferential equation
du d

dt + Bu(t) + a*Au(t) + (b*u(t)) 9 F(t) a.e. on 3
(1.1)

u(O), u

In (1.1) A, B are nonlinear operators, a, b and F are given functions

defined on [0,m), * denotes the convolution g*h(t) - g(t-T)h(t)dT, and

u0  is a given element. Under various assumptions, partly motivated by the

problem of heat flow in a material with "memory" formulated and discussed in

Section 6, existence results are established, followed by L2, boundedness,

and asymptotic results. These are then applied to the physical problem in

Section 6. Fro, the abstract viewpoint the present study generalizes the

theory developed in (8] for (1.1) with b B 0 (see further comments below)i

the case b A 0 is the one which arises naturally in the mathematical model

for heat flow.

In order to state and discuss the existence results we follow (8] and

introduce the hypotheses common to Theorem I and 2 under the heading:

(1)

Helsinki University of Technology,partially supported by the Mathematics
Research Center, University of Wisconsin-Madison, sponsored by the United
States Army under Contract DAAG29-80-C-0041.

(2)
Mathematics Research Center, University of Wisconsin-Madison, sponsored by

the United States Army under Contract No. DAAG29-80-C-0041.
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General Aesumptione

Let H be a real Hilbert space and W a real reflexive Danach space

satisfying

W Ci H =W' (1.2)

where W9' is the dual of W. It is assumed that the injections in (1.2) are

continuous and dense and (V ,w> - Cv',w) for w' e H, w 6 w where (V 6 ,v>

is the value of wo e WO at w eV and (*,e) is the inner product of H.

We denote the norm in H by 1 and the norm in W by 1*1. LetII li: W + C-,] and *:H + -e be convex, lower samicontinuous (l.s.c.)
r and proper functions and define

Aa* n-, (1.3)

where a*e , are the subdifferentials of Iiand *respectively (see e.g.,

(1)*Then A and B are (possibly multivalued) maximal monotone operators

from Wf and H to W1 and H respectively. Define P (" by

# (u) -lim inf(4'Cv) :v e V and Iv - ul < r) (1.4)

H r+O

* is automatically l.s.c. and 9 is convex since # is convex. ldisH H
the largest l.s.c. function on H satisfying #H 4 on W. We assume that

HH

Let A H 3# Hl~ AH is maximal monotone in H and, in view of (1.5), has the

property

AHu Au for uei v (1.6)

- ~This follows from the implication: u e w, v e H and (z)9()+
MH (z H(U+

(v,z - u) for z e H --> li(s)) *(U) + <v,z - u> for z e w when (1.5)

holds. Note that if 9:H * ~~]defined by

-4(u) , u e w

4+W u eH\w

-2-
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is i.S.c., then * " and (1.5) holds. Moreover, * is 1.s.c. if

l u (u) W + e,

The Yosida approximations A A of A H are defined for A > 0 by

A -711 -1 =( +)A A ' A' X H

see (1] for the properties of A X . Relating AX and B we assume there

exists 0 e [0,-) such that

(w,A;u) ) -8(Iw12 + ul 2 + 1) for u e w, w e Bu, A e (0,1] . (1.7)

We will also require the compactness assumption

For every K > 0, {u e H : I#(u)l + Jul - K) Is precompact in W • (1.8)

In particular, we assume D(#) C W.

As regards the kernel a, we will require that the following conditions

are satisfied.

Conditions (a):

alt) is locally absolutely continuous on [0,-) . (1.9)

For every T > 0 there is a KT > 0 such that

v e L2(0,TIH), d1 ,d2 e [0,-)

and

ft. (a'v(s),v(s))ds 4 d1 + d2 max 11o v(T)dTI, 0 C t CT
0 o 20Ics ft 0

*imply

l v(s)dsl T K(d1 + d2 ), 0 C t < T (1.10)

and

Ij.f (aev(s),v(s))dsl 4 K (d + d 2), 0 t CT0 KT 1 2

Note that if v e L2 (0,T0;H) where To < T satisfies the assumptions of

(1.10) on [0,T 0 ], then v extended as 0 on (T0 ,T] satisfies the same

conditions on [0,T], Thus, without loss of generality, the map T + T  can

be assumed nondecreasing.

-3-
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For classes of kernels a satisfying Conditions (a) see Proposition (a)

and Theorem (a) of (8]. Finally, regarding the kernel b we assume:

b~t) in locally absolutely continuous on [0,.-) (.1

This concludes the general assumptions.

The first existence result is:

Theorem 1. Let the general assumptions (1.2) - (1.11) be satisfied. Further

assume that A - 3* is single-valued and D(A) - W. Then for every
~1•1

F e w([0o,)H) and u0 e D(#) equation (1.1) has a solution u in the

sense:

(i) u e c([o,-);w)

du 2(ii) Fe L ([O,-)gH)

2
(iii) F - d (u + b'u) - a*Au e L [0 ,-)H)

d

(iv) F(t) - (u(t) + b*u(t)) - a*Au(t) 6 Bu(t) a.e. t 0.

Moreover,

(v) .0 Au(s)ds e L ([O,-),H)

In the special case b B 0, which is not excluded here, Theorem 1 was

proved in 18]. The present result, as well as Theorem 2 below, is a

generalization in the spirit of the remarks in (8, p. 717] in which the

operator A in (1.1) is replaced by A + P where P : H + H is a Lipschitz

dmapping. However, in the present context the perturbation term - (b'u) is

different and requires a different treatment in the proof which is sketched in

Section 2. Primarily affected is the proof of the analogue of Proposition 2.1

of (8]. A proof of a similar generalization was first given by Mr. M. J. Luo

as a part of a research seminar of the second author at the University of

Wisconsin during 1979-80.

-4-
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We remark as in (8, p. 705] that by conclusion (i) of Theorem 1 the map

t * Ault) is continuous into the weak topology of W' and a*Au is well

defined vith values in W'. By (v) and a*Au(t) - a(O) Au(s)ds +

a1*(j0 Au(s)ds), one also has a*Au e L C(i ,I). However, under the

assumptions of Theorem 1 one cannot obtain estimates on Au in H.
2

Under suitable additional assumptions estimates on Au e L 2 ((0,e)H)
40c

can be obtained. Then, as in [8], existence results can be proved in which

neither A nor B is required to be single-valued. We give such a result

under the type of compatibility restriction relating the operators A and

B which is used in the boundedness and asymptotic analysis for (1.1 ).

Theorem 2. Let the general assumptions (1.2) - (1.11) be satisfied with

W - H - W' (thus 4H - 4' A - A, etc.). In addition, let
H H

b(O) ) 0 1.12)

and let there exist constants y > 0, 6 > 0 such that

Slu1 2 + (v,w) - b() u2 6vl 2  .13)
T'ul2

for v e Au, w e Bu. Then for every F e Wl c ([0,e)iH) and

ue e D() A D(+) equation (1.1) has a solution u satisfying u(0) - u0 , u,22

u' e L [O,-)lH), and there exist v, w e L2  ((0,aH) with v(t) e Au~t),
oc A Mw

w e Bu(t) a.e. on 0 < t < - such that

du d
+ w(t) + aev(t) +t (beult)) - F(t) a.e. (0 4 t < 1)

A sketch of the prnofs of Theorems I and 2 is given in Section 2. Assumption

(1.13) can be replaced by the more general assumption (used in [8, Theorem 2]1):

for each r > 0 theze exists a number kr) such that

. k(r) (I + lwi) ) lvi for v e Au, w e Bu, Ju- r (1.14)

without affecting the proof of Theorem 2. To verify that (1.13) implies

, (1.14) take kr) - k0 1 + r2 ), k0  max( C-, y81, 1) and consider the

cases lvl > 1, lvi 4 1 in 1.13). We prefer using (1.13) as it arises

:< -5-
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naturally in the discussion Of L2, boundedness and asymptotic results for

solutions of (1.*1) which will be presented next. Concerning Theorems 1 and 2

S we note that the question of uniqueness of solutions of (1.*1) remains open,

even in the case b 3 0.

We next turn to a discussion of boundedness and asymptotic. of

solutions. To simplify the exposition we assume in Theorems 3 - 6 that the

operators A and B are single-valued, and consequently replace the

inclusion by equality in (1.1). In what follows we denote locally absolutely

continuous functions by LAC.

Theorem 3 Assume that in (1.1)

a, a' e L (R~),(.5

a is strongly 2ositive definite on R+,(1.16)

b e LAC(Re), and (-l)kb (k)(t) 0
(1.17)

a~e. on i'(k -0,1)

F e L2(e~,H) ,(.8

A =aawhere HiB*(ee is convex, losoc. proper,, (1.19)

B D(B)C H +H With (u,Bu) > Cl uj
(1.20)for some c > 0, for every u e D(B)

2 2 1()2 2Uz c IuI + (Au,Bu) - -b-- IAu-UI > 81AUI

for some Ui > 0 and co, 6 satisfying c > co, 6>0 (1.21)

for every u e D (A) n D(B).

Let u be a solution of (1.1) satisfying

+2 +
u e LAC(N ,D(A) n D(B)); AU, Ru e L (R H) .(1.22)

Then

Au e L 2(R ,H), u e L 2(3 ,H) AL(R,H)



By definition the condition (10.16) is the same as the requirement that

a(t) - a exp(-t) is positive definite on le for some a > 0. A consequence

of (1.15), (1.16) is that (see [19, Lema 4.2] and [10, Lemma 3.11) for every

1 +0

toc

0 Ia* #(t) dt - Ir-Q(a, #,T) 1.23)

where Qa,#,T) - J0 (w(t), aO*(t))dt, and where 1.a - aL +whee Qa )  -)-

4 a IL ) It is important to observe that this constant p also
1+jL(3

appears in (1.21). Assumption (1.21) is formally the same as assumption

2
(1.13) in Theorem 2, but the constant y is now written in the form 2e it

should be noted that the requirement inf l'u) > -m is not imposed in Theorem
ueH

3 (compare [8], Theorem 4)g thus Theorem 3 is new, even in the special case

b S 0.

The assumptions (1.15) - (1.21) of Theorem 3 do not imply the existence

of solutions of (1.1) satisfying (1.22). However, if one also requires that

a' e Bv [0,-), that B - 3#, where * : H + (-i,] is a convex, l.s.c.,
1oo

and proper function, that assumptions (1.7), (1.8) are satisfied, and that

F e W1C (R ,H), then Theorem 2 yields the existence of solutions u satisfy-

ing (1.22). The reader should note that a' e Bv [0,41, (1.15) and

a(U) > 0 (which follows from (1.16)), imply that conditions (a) of the

general assumptions are satisfied (see Proposition (a) in [8]). Theorem 3 is

proved in Section 3.

In order to state a boundedness result for "large" forcing terms F in
2  2 +

(1.1) (i.e. F not necessarily in L2IR+,H)) we denote by L 3 ,H) the

class of functions # : R+ H such that each # is locally square

integrable and such that

sup If-1 I#8s)12ds < "
1 (t<

-7-
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Theorem 4. Let the assumptions (1.15) - (1.17), (1.19) - (1.22) of Theorem 3

be satisfied. In addition, assume that

a (at)l I t -  I (t) K t - V a.e. on [1,-)

o: -: (1 24)

for some constants K, V with V > 3/2,

2 +
F e L;(R ,H) (1.25)

Jul plAul, for some p > 0 and for every u e D(A) . (1.26)

Then

2 +Au e L(R ,H) (1.27)

u e L(3+,H) . (1.28)

If, in addition, B a# where * : H + (-em] is convex. l.s.c. and

proper, then

dui 2 +
and Bu e L(R ,H) . (1.29)

Theorem 4 is proved in Section 4.

The common conclusion of Theorems 3 and 4 is u e L (N3,H). Comparing

the two results observe that the assumption (1.18) in Theorem 3 concerning

F is weakened to 1.25) in Theorem 4. But in order to establish the

conclusions of Theorem 4 the decay rates 10.24) must be added to assumptions

(1.15) - (1.17), and assumption (1.26) is needed in addition to (1.21). In

the special case b - 0 and B 0 A no analogue of Theorem 4 (also of Theorem

5 and 6) was considered previously.

Theorem 4 serves as a basis for the following asymptotic result.

Theorem 5. Let the assumptions of Theorem 4 be satisfied. In addition,

assume that assumption (1.25) is strengthened to

lim 1 IF( l12dT) 0 (1.30)

Then

lim J 1 IAu(T)2 d = 0 (1.31)

t%,

-2', -8-



lim u(t)I - 0 (1.32)

Theorem 5 is pxoved in Section 5.

We next wish to consider the analogues of Theorems 3 and 5 for equation

(1.1) when F(-) # 0, of importance for the physical problem discussed in
Section 6. To introduce the results proceed formally at first assuming that,

e.g., the assumptions of Theorem 3 are satisfied, except that (1.18) is

replaced by lim F(t) F(-) exists. In addition, suppose that b(-) - 0
t.*a

and that u is a solution of (1.1) such that u(-) - lim u(t) exists. Then
t-.

the "limit equation" associated with (1.1) is

Bu(-) + ( a(s)ds)Au(-) F(0) , (1.33)

where r0 a(s)ds > 0 (by assumption (1.16)). A result of Brezis and Haraux

(2] states that equation (1.33) has a unique solution u(-) for every value

F(-) in H (including 0), provided the operators A and B are sub-

differentials (of proper, convex l.s.c. functions: H + (-m, ]), and provided

at least on- of the operators is onto (this is the case for B satisfying

(1.20)).

It is easily seen that if u(m) is the solution of the limit equation

(1.33) and if u(t) satisfies (1.1) a.e. on Re, then u(t) - u(-)

satisfies the equation

d
d (u(t) - u(-)) + Bu(O) - Bu(-) + a*(Au(t) - Au()) +

(1.34)
r. d+ .b*(u(t) - u(-))] = g(t) a.e. on R+

where

g(t) - f(t) + (f a(s)ds)Au(-) - b(t)u(-)
(1.35)

f(t) - F(t)- F(-)

-9-
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The following analogue of Theorem 3 can b& proved by examining its proof in

Section 3 step by step.

3Theorem 6. Let the assumptions (1.15) -(1.17), b(-) =0, (1.19) be

satisfied. In addition, assume that

Bu - 3#(u), *:H + -a. in convex, lesec. and proper 0 (.36)

pi)f(t) -F(t) -F(-) e L ( 4 H)l

~' 2 +(1.37)

(ii) b(t) e L2 ( a(s)ds e L (U*)

Let u be a solution of (1.1) satisfying (1.22), and let u(-) be the

solution of the limit equation (1.33) such that assumptions (1.20) and (1.21)

hold with u, Au, Bu replaced respectively by u - u , Au - Au., and

Bu -Bu. Then

2 + 2 + 6+

It should be observed that if F(-) -0, then u(-) -0 and Theorem 6

reduces to Theorem 3.

It is also clear that the boundedness result (Theorem 4) does not require

any analogue in the present context.

The following analogue of Theorem 5 can be proved by examining its proof

in Section 5 step by step.

Theorem 7. Let a, b satisfy (1.15) - (1.17), (1.24) and (1.37(11)).

Assume A satisfies (1.19) and let (1.20), (1.21), (1.26) hold with U, Au,

Eu replaced respectively by u - u(-), AU - AU(-), Eu - BU(-) where u(-)

is the solution of (1.33). Let u be a solution of (1.1) saifing (1.22)

and suppose lim IF(r) F(_)12 dT 0. Then
t.*m

lim Iu(t) -u(-)I 0 ,lim I Au(s) -Au(S)I 12ds -0

t-1 .

. .. . . . . . . ..0
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We conclude the discussion of equation (1-1) with some remarks about the

very special case when B B A. Define

clt) - I + alTldT (t e R. •
lo,

Then (1.1) with B E A can be written in the form
d [ui + c'Au + b*u] B F, u(0) - u0  *(1.38)
dt

Let

G(t) - u0 + F(T)dT

Integrating (1.38), equation (1.1) (B 2A) is equivalent to the nonlinear

Volterra equation

u + cAu + b'u B G • (1.39)

If k 1 [0,-) * +  is the resolvent kernel of b, uniquely defined (under

assumption (1.11)) by

k(t) + b'k(t) -- b(t)

and if

d(t) -c(t) + k'c(t), g(t) - G(t) + k*G(t)

then (10.39) is equivalent to the nonlinear Volterra equation

u(t) + d*Au(t) a g(t) a.e. on l+ * (1.40)

This equation has been studied extensively in the present context. In

particular, existence (and also uniqueness) theory has been developed by S.-O.

Londen (13], Crandall and Nohel (9], Gripenberg El], results on boundedness

and asymptotic behaviour of solutions of (1.40) have been obtained by R. C.

MacCamy (15], S.-O. Londen [13], and particularly analogues of Theorem 3, 5, 7

with applications to a special case of the heat flow problem discussed in

Section 6, by Clement, i4acCamy, and Nohel (5]. The existence, boundedness,

and asymptotic behaviour of positive solutions of (1.40) (when the data are

positive) was investigated by Clement and Nohel (3], [4]. The present study

can also be regarded as a generalization to (1.1) of some of these results

when B A.

-11-
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2. Proof of Theorems I and 2. The basic outline of the proof will follow

that of Theorems I and 2 in [8] which concerns the special case b E-0 in

(1.1). Several of the technical aspects do however differ; the latter will be

" emphasized.

Let &A be the Yosida approximations of AH and consider the

regularized problem associated with (1.1) (compare [8, (2.11)]):

* - du ddu + DU + Apu + a*AAu + (b*u,) 8 F, X > 0, e > 0
(2.1)

SX (0) = U0  •

An easy application of Lemma 2.1 of (8] with

G(u) - F - aU - a*AAu - (b*u)
dt

yields the following analogue of Corollary 2.1 of [8]:

Proposition 2.1. Let the general assumptions (1.2) - (1.11) be satisfied.

2 +
Let e > 0, A > 0 be fixed. Then for every F L2, (RiH) and Uu e D(#)

the initial value problem (2.1) has a unique solution uA on [0,-) in the

sense

A 2 +
UA e C([O,-)IH), e- e Llocl ,H)

uA e D(B) a* e. on R

uA satisfies (2.1) a.e. on R

The next step is to obtain various a priori estimates for the solution

uA of (2.1) which permit first X + 0 for fixed E > 0, and then £ + 0 in

(2.1). For this purpose we establish the following analogue of Proposition

2.1 of (8]; it is here where the technicalities of the proof differ.

* Proposition 2.2. Let T > 0, D - 30, c 3? where 9, T : H + (--,s] are

convex# l.s.co, and proper. Let C, 0, cO e [0,-), T > 0, F e w'(0,T;H),

u0 e D(G) n DM), a: E0,-) + R, b : E0,) R K be given such that

-12-



4i) *(u) ) -c (jul+1), Y(u) ) -c (IuI+l) for u e H
0 0

(ii) (v,v) av12 - O(Jvl2 + lul2 + 1) for u e H, v e cu, w e Du
(2.2)

(iii) a satisfies conditions (a), (iv) b satisfies (1.11) ,

Then there exists a constant C depending on u01, a, b, c0, T, f(u0

Y(u0 ), 0, EIE W (but not otherwise on 0, Y, and not on a), such that if

du 2
Mi U, du r, VW e L (0,TH), uCO) = u0

(ii) v(t) e cu(t), w(t) e Du(t) a.e. on (0,T) (2.3)

(iii) + w(t) + a*v(t) + d bu(t)- F(t) a.e. on (0,T)

dt [but )

then

"T du (12 iT 2 i
max( 0 Id (s)do do, d0 ,v(s)2ds, a j0 Iv(s)i2 don, u(t)l

M U-)I J ul ll , ~ ult)lJ, Jf vlsldsJ} -CC

for 0 4 t 4 T.

Sketch of Proof of Proposition 2.2. The proof is similar to that of

Proposition 2.1 in (8]. In particular, to obtain the analogue of the estimate

(2.18) in (8] take the scalar product of (2.3) (iii) with v, integrate

over (O,t] and use (2.2) (ii) to obtain (compare with (2.14) in (8, p.

711]):

,(u(t)) - flu 0 ) + a 0 v(0)2 0 (a*v(s),v(s))ds ,

-b(O) t (u(s),v(s))ds - (b'*u(s),v(s))ds + JO(F(s),v(s))ds (2.4)

+ [f lvo w(s)l2do + f O ju(s)j 2do + 1], 0 4 t 4 T

Define as in [8]

gr(t) - max IJf v(s)dsl
0O<s (t

Using assumption (2.2) (i) and the estimate (see (2.17) (1) in [8])

-13-



"1P. (F(9lv(Wlldj C C gv(tl

in (2.4) yields

a Po Iv(s)I 2ds + o (a*v(s),v(s))ds C c(Iu+1.) + uo) + c1g(t)

4 "[1 + 0 Iw(s)1 2ds + p lu(s)12ds] + Ib(O)I I0 (v(s).u(s))dsl (2.5)

+ I f (vs), b'*u(s))dsl 0 4 t 4 T

By cc 21 *.. we denote constants which depend only on Iu0l, a, b, co, T,

OU0 ), (u 0 ), 0 and IFIr E 1

To estimate the last two terms in (2.5), integrate both by parts and

estimate to obtain

Ib(O)l I f (v(s),u(s))ds + Ilo (v(s),b'*u(s))dsl C

'jq(t)(lb(O)l lu(t) + Ib(O) I lu'l(s)lds + ,ITL sup lu(s)l
-. " (0, T) 0O Q t

+ Ju(i0) l IWO + Ib1 0 ju'(s)jds]
L (O,T) L (O,T)

Substitution of this estimate into (2.5) yields (compare with (2.18) in [8])

a fo Iv(s)I 2 ds + f0 (a*v(s),v(s))ds C

1 + u(t) + 0 Iw(s) 2 ds 0 us2d (2.6)

+ c3(1 + Iu(t)I + 0 Iu-(s)Ids] gv(t) ' 0 C t C T

The monotonicity of the maps t + lul + ,w(s)12d + J u(s),2d
L (O,tH)

and t + lul + f lu'(s)lds used in conditions (a) and combined with
*L (O,tlH)

(2.6) yields (compare with (2.19) in [8])

I -14-
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gv(t) OC c4(1+ Iu(t)l 0 0' wsIds+f~~)

J (2.7)

+ (10 + Iu(U (,tH + j u'(u)Idu), 0 C t C T

Next, from (2.3) (iii)

w(t) - FMt u'(t) -a*v(t) - bO)u(t) -b'*u(t)

and using the known estimate (see (2.17) (11) in [81)

Iav(t)I 'C c6 g1,(t)

* we obtain

'w(t)I -C c7(1 + lu'(t)I +4 gv(t) + SUP u)I

Substitution into (2.7) yields (compare with (2.21) in (81 where the first

term under the integral should be Iug(6)1 2)

gv M)4C ce If~t (Iuv(s)12 + SUP Iu(.r)12 + g2 W '2s
0 1 T4 u (2.8)

+ C9[ + ftI u'(s) Ido] , 0 4Ct C T

Squaring (2.8) and using

SUP Iu (') 12 4C (IUMoI + Je Iu'(T)dr) 2

* ~~(ft0 Iu.(B)Ids)2 C t It usI
2d

in (2.8) yields (compare with (2.26) in (83)

2(t C c (1 + Itj' j2 ds + jt (gv(s)) 2 d) 29
gv10 0~I~~ aO tC 29

The Gronwall inequality, %,(0) - 0, and the monotonicity of the map

t + lot Iu'(sI 2do used in (2.9) imply (compare with (2.28) in (8])

2 2 (
g,(t C 11 + Iu'(s)t do), 0 C t ICT *(2.10)

We next estimate t~ tu'(s)l2 do. Taking the scalar product of (2.3)

(iii) with u' and integrating over [0,t] yields



WI u'lslI 2ds + 0(u(t)) - *lu01 + (a*vl s,u'lds(.1

+ b f (u(s),u'(s))ds + (b'*ulsl,u'ls))ds (2.11)

C max IF(s)I P" lu'(s)Ids, 0 Ct -CT

i Using (2.2) (i), the known estimate for Ia'v(t)I in terms of gv(t), and

i07- jb(O) fO (u(s),u,(s))ds + fo (b,.u(s),u'(s))dsj C

I ; ft u )t ju(s)12d+1 It

+ Ib' 12  0 2du(s)d

in (2.11) gives (compare with (2.23) in (8])

fotIu,(s)I 2do .c1 2 (1 + ('+gVtW) f11u''s~jds + Iu(t)I + Jlu(sf2 2do) (2.12)

The routine estimates Iu(t)l 4 lu(o)l + ft lu'(s)lds, ft Iu(s)l2do C
4 2

K~l + (J u()d)Iused in (2.12) yield

fS u's)I 2 ds Cc 1 3  + c 1 4 g Ct) f0 It u'(s)ids + c1(J0 lu'(s)Ids) 2

0 c, , 15 0O

C c c l 2 + L it ' C ) I d s ) 2 ] + it) I s )

13 1412 gv(t) +21 0 C1 5 (j 0

for any n > 0. Substitution of (2.10) gives, for n > 0 sufficiently small,

the final estimate

Iu'(s)tds C 1 6 + c17 (J0 lu'(s)lds)2  0 C t C T

which is the same as (2.29) in [8]. The proof of Proposition 2.2 is concluded

exactly as in (81, proof of Proposition 2.1.

The proof of Theorems I and 2 is completed using Propositions 2.1 and 2.2

following the procedure in [8, p. 714-717]. In particular, Proposition 2.2

applied to solutions of (2.1) yields the estimates (2.31) of [8], with (2.31)

(vi) replaced by

d 2
T IF(s) - (u'is) + a*A uls) + lWu ( slll2ds 4C

0o T

~-16-
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Keeping € > 0 fixed and letting X + 0 in (2.1), and using the estimates

(2.31) in [81 and the compactness assumption (1.8) gives (2.32) of (8] with

(iv) replaced by

F- (u + CAu + a*AA u + . (bx- Wu .w
n n n n n n

weakly in L2(0,TIH), T > 0. Then the limit function u¢ satisfies (compare

with (2.33) in (81)

ul, + w. +€v€ + a*v, + - (b*uc)
at

u 2  + +
u ,, w, v6 eLc(a.H), w (t) e u (t), v(t) e Hu(t) a.e. on R

The remainder of the proof is now exactly as in (8]. In proving Theorem 2 one

needs to remark, as was already done in (1.14) Section 1, that the present

assumption (1.13) in Theorem 2 is a special case of assumption (1.12) in (8].

3. Proof of Theorem 3. Form the inner product of (1.1) with u and

integrate over 10,t] obtaining

lu(t)12  u0 12  t (ua*Au)d2 - + f0 (u0 u)dT + 0u
(3.1)

+ Q(u,tidb) f (u,F)dT, t e a+

where

Q(u,tidb) 0 o (u,udb)dr, udb - b(O)u(t) + b'(s)u(t-s)ds

Using (1.20), noting that by (1.17) Q(u,tsdb) o 0 (see the identity (3.7)

below with fl - f2  u U), and writing

IuIl f0 Iu(.r)1 2d-r

(3.1) implies

clult ( lult IFI 2
1  + lult la*Ault + 2-1u 012 (3.2)

-17-



Dy 1.3)Ia~I /2Q/;2 (a,Au, t) , and therefore9, f rom (3. 2)

1/2/2 (21'2l (a,Au,t) cluI1 - I I 1u2 0W - . (3.3)

Suppose that

lim lu It * (3.4)

Recalling (1.18) and c > co (see (1.20), (1.21)), (3.3) and (3.4) imply

2 2
Q(a,Au,t) ), C0 Ilul tf for t e It sufficiently large .(3.5)

To obtain an upper bound for Q(a,Au,t) form the inner product of (1.1)

with Au and integrate over (O,t]. Using (1.19) one obtains

flu(t)) - *(uo) + PO(Au,DBu)dT + Q(a,Au,t)

(3.6)

+ ft(Au,u'db)dr - lt(Au,F)dr, t e

To estimate the last term on the left side of (3.6) we use the definition of

* u'db and the identity (easily checked directly by differentiating both sides)

- f(f Vf 2 *b')dr -

I Jf~IfT) 22 T) bl(s) dsdT + Ib(r)If (r)I dT (3.7)

4 . ftb(t- -) If M(I Idr - b()f(If,(cr)j2 + 12 
2)d-r,

2 +

where f, fe L It( H), and where we take f1  Au, f2 -u Consequently

(1.1?) and (3.7) imply

(AU,udb)dr b(0) LuE .(3.8)

Using (3.8) in (3.6) yields

,(Au,Bu)dr + Q(a,Au,t) -b(0) Au *2 I0 2 t
(3.9)

*(o- vu(t)) + lAulitFi, tee

4-18



To establish the term - (u(t)) in (3.9) we argue as follows: Suppose

Uul
Iim sup - * (3.10)

*t.a t*1

From (3.10) and assumption (3.4) there exist sequences t * , £ 4 0 such•n n

that

11t,, (u(-r),a*Au(t))di 1C nUnt lanl ( U I C C al2 n  3.11)
n L (a) n n

Using (1.20), (3.11)o and Q(utjdb) ) 0 in (3.1) yields

-E l ul 4-+F1I DuD It4C- + IFI lalI
2 n n n 2 L2t t

2 +
which implies sup lust s < - and u e L (t+ H) i in violation of (3.4).

n n

Thus we may suppose that (3.10) is false, and

'lu I t
*. 1 sup u <

Therefore, there exists a constant K, independent of t, such that

le n t 4 K Iu It  , t e +  (3.12)

Suppose next that

hin sup lu(t)I (3.13)
i AUIt

Using (3.12) to estimate the left-hand side of (3.11) yields

Ij(u(r),a*Au(?))dTl C Kil SA u 2  (3.14)
0 1 + (

L ()

using (uBu) ) 0, Q(utidb) ) 0 and (3.14) in (3.1) gives

Iult)l2  lu0 12 22 - 4C - + hial Ie Au It + I L IAul , t e +

LR + 1  L(lit,H)

which violates (3.13). Thus there exists a constant K1, independent of

* t, such that
+

Iu(t)l c K1 + K1 lAul t  , t e R M (3.15)
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- Since by hypothesis * is bounded below by an affine function there exist

constants K2, K3  independent of t, such that making use of (3.15) in turn

implies that

- u(t) K2 + K3 Aul t  , t e (3.16)

which is the desired estimate for - (u(t)).

* Returning to (3.9) and using (1.18), (1.21), (3.5), (3.16) yields

6 AU IAu It  , teR+

* where K4 , K5 are constants independent of t. Thus

sup+ PO IAU12 dT( < (3.17)
* ten

But from 1.15) and (3.17) one has a*Au e L2(3+,H)j hence (1.1) has the form

du + Bult) + bl0lult) + b'u(t) - F (t), t e ( (3.18)

where FI - F - a*Au e L2(eH) by (1.18). Forming the inner product of

(3.18) with u, integrating over [0,t], and using (1.20) yields

2u~l - 0- cnun 2 + Qlu,til -C IFnI ,ulnt , t • +  (3.19)
2 2 cu +Qutb)(F 1 L 2

Since Q(u,tdb) 0, F1 e L ( ,H), standard estimates used in (3.19) imply

sup+ lo ,u(T)1 2 dr . (3.20)

tea

Consequently, the assumption (3.4) is false and (3.20) holds.

Using (1.17) - 1.19), (3.20), and Q(a,Au,t) P 0 (by the positive

definitness of a), in (3.6) one has

f(Au,BU)dT 4 K lul - *u(t)) + KL t e R (3.21)
0 6 t 7'

where 61, IK7 are independent of t. But from (1.15), (1.18), (3.1),

, (3.20), (u,Bu) + Qlu,t,db) ) 0 follows that (3.15) and hence (3.16) hold

S"even if (3.20) is satisfied. Therefore by (3.21)

(Au,Bu)dT -C K8 lAul + KS,t e (3.22)

*" for some constant Ka. From (1.21), (3.20) and b(O) )0 follows

-20-
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(AU,BU) > 6Ulu~- 9  t e a

for some constant K9  independent of t, and this, together with (3.22)

given

sup+ lot IAuI dr < (3.23)
tea

Finally, returning to (3.1) and using l'(u,Bu)dr + Q(u,tjdb) 0, (1.15),

(1.18), (3.20), (3.23) gives that u e L (3 ,H). This completes the proof of

Theorem 3.

4. Proof of Theorem 4. We require two technical lemmas for the analysisy

their proofs are given at the end of this section.

Lemma 4.1. Let g : 1,-) + 3 satisfy

tV gteL -) 41

for some V > 3/2. Define

y 2(T0  su jT 'TO f -~ g 2(i)dT) !/ 12dx, T0  2 ,(4.2)

where the sup is taken over T e (T s T 0 (T < J Then

y e L (2,-), yg(T) O(T0  ) T0 + (4.3)

Lemmna 4.2. Let C, T0  be given positive numbers and le't eR)

Assume that lim sup f. f(T)dr - Then there exists T > To and a

seouence t + eas n + such that
n

t

ftr- d f r, T C t -C t , (4.4)
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ftnT f(T)dr 4 c ft-n f(T)dr (4.5)

n 0 n

*The proof of Theorem 4 requires the following preliminaries. Fix To> 2

much that

where a, b' are the kernels in (1.1), p is the constant in (1.26), c is

the constant in (1.20), co, 8 are the constants in (1.21) with c > co, and

where w 2 ais defined in (1.23)1 this choice is possible by (1.24)
2c0

and Lesa 4.1. Next choose c e (0,1 such that

4c(q+ p) < (4.7)

C2- 1/ < (c~c0)/ (4.8)

where we define g- jai + r'Ib'I, lal - f~ +Ia(s)tds, IbI-1 f + I(s)Ids.
R R

Choose T >0, and asequence t n + - as n+ -, such that

2 2(4)

t-Ta lau ec T t tDn 1,,.anC , n -1,2,... (4.10)

where we define

2 t22 t -T 2 (.1
a ft -TAuI ds, a2 n lt-- Auj ds 4.1

n n 0

These choices are possible by Leimma 4.2, and because we will assume

limsupf_, IAuId m (otherwise conclusion (1.27) of Theorem 4 holds).

In the proof of Theorem 4 we will consider the intervals I

-1,T~l tnT]. For each n take T e I such that IAu(n) T 4CaC (To

see that much T exist, note that if not then IAu(Tr)I > can a.e. onI

and as T 0 >1I

2 2 1 2 2 2 2
n I n n

n

where the last inequality follows from (4.10).) Define T~ n tn - thus

T 4T < Tl and

n

-22-



"AU(t -T )1 (4.12)

t -T-T2

2 2-T n 2 2 2 (4.14 )f~ AulI do e ( a6)

-T n

Define the sequ encof numbers B n.~, n.t - 1,2..... by

f n 2 t2T 2
2 t lul da, b lul 2ds , (4.15)

13"tT n TT

l u - ul~ds "(4.16)

.i Then using lul pAue (assumption (1.26)) and 14.9), (4.10), (4.14) as

• ., veil am T ) T, we have

bn d po , (4.18)

n n-

u p n (16 a (4.19)

ann

i We begin the proof of Theorem 4 by taking the inner product of (1.*1) by

u and integrating over Pt-Tn, tn] obtaining2 2

2e 2en te+ o r (4,by) + in ( o,a*Auld.

n,'n:-n n n

+-- (u,u* +I "---T (.,F)dT•2 ~~ 2-Tt-Tf

nn n n

,' To estimate the terms in (4.20) define un - Xtn-Tn, t(]u, n- 1,2,...,nnn nn

* :where X is the characteristic function. Then

I t

f (u,u*db)dT Q~u t I db] + h ,(4.21)

t -T n n n
n n
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where we define

t t -T

nfn

To estimate hn we first use (4.15), (4.18) to obtain

t t -T
IftT ) f nt-Tn b'(T-s)u(s)ds)d I -C Pin Jbn -C*jbj (4.22)

* Then observe that by (4.2), (4.15), (4.16)

t t -T-T

Iftnt-T (u(T), fn 0b-(-T-s)u(s)ds)drI
n n

'n''t-T I
n n k-l tn- (k+1)T-TO

t a t -kT-T0  -kT-T0

on(t 0)2( n 0 2 !2
t-T- b'-s) I do d 2)41/

nn k-i n 0n

= yn(ft T-1 k- (I1 n (k+)T-Tv)dv/2 20X/

0 -y ~ ~ +) 2( )2 ~0i (

where the last inequality follows from (4.19). Thus

Ihn 1 Pa nOn(elb' I + b(To)) *(4.24)

in order to bound the term in (4.20) with the kernel a we notice that

by (1.23), (4.15)

if n (u(T), Au*a(Tr))dTlI fon(uT), Au,*a( T)) dT + n
t -T n n

n n
(4.25)

(Oi1/2 '2 (,ut+
fl Q(aA n 'tn +'n'
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7V~ -%, .-.

gdef t t -T a

where g f- tn. (U(T), f0n ~aT-s)Au(s)ds)dr. To estimate g. ye
n n

proceed as in (4.22) -(4.24). This obviously yields

IgnI a' Eclal + Y (TO)] (4.26)

* To complete the estimation of the terms in (4.20) we finally observe that by

(1.25), (4.17),

def t
T1  sup a 1 tf (u,F)d'rI < (4.27)

n n

Now use (1.20), the fact that Q(un, tn, db) )0 and (4.21), (4.24) -(4.27)

in (4.20) to obtain

C0 r ga 0 + 0 P j 1 2f2,U 1t
n n n n Y2(,unflt

(4.28)

+a0[y(TO)+pb T)]+K 2 Iu(t -TI
n a n) n(o]+In

The relation (4.28) should be viewed as providing a lover bound for

Q(a,A%,tn). Our next purpose is consequently to obtain an upper bound for

the same quantity.

Form the scalar product of Au and (1.*1),* then integrate over

EnTn tl This gives

t t
*(u(t n) n ni t -Tf (Au,Bu)dr + 1t-T (AU,Au*a)dr

n n n n

(4.29)

+ -T (Au,u'db)dr n_ (Au,F)dr

Concerning the terms in (4.29) we observe at first that from (4.9), (4.13),

(4.14) follows upon estimating as in (4.21) -(4.24)

-25-



t t t -T\"t n tn n

; nT (Au,Au*a)dT- Q(a,Au n,t + -T (Au(T),

+ t0T 0 a(T-s)lAu(s)ds(dT (4.30)

- Q(a,Aun,t) - an [2C(+C)lal + yalT0) •
n n n

Then observe that

tn  t tr (u°udbSrt b(0 ( d+r~(un'')
ft -T (Au,u(dbldT -b(u + n n  u
n n

t t -T tn-T-To  2
+t-T (AU(T), ftn  n + (Ts)u(a)do)dT b(0) 'u-u2 d

-- n7T-T0 2 ftn-Tn n 0 i n
(4.31)

- a ((+c)b lb' Il + Ynyb,(TO)]

st,
't n-T lu-hut dr a 2 pe(1+c)lb'l + pyb,(TO)]
n n

where the last stop uses (4.18), (4.19). Note that the first inequality in

(4.31) follows from (1.17) and (3.7). By (1.25) we have

def -1 t
.- supa 1 jtn  (Au,F)drl < e. (4.32)
2 n I-T

n n n

Our last problem when estimating the various terms in (4.29) is to bound

the difference #(u(tn))- *(u(t-Tn)). Using (1.26), (4.12), (4.21), (4.32),n n n)

(u,Bu) P 0 and the fact that

sup a 2 ftn (u,Au*a)dT <

n t-T
n n n

-2in (4.20)'gives sup a Iu(tn)l < and so lim a 2  u(t )1 0. But then,n n n n
n n.o

for some e + 0,
f
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7 -77.-'.-.. 
7

*(u(t ) - *(u(t -T ) ) -K K Iu(t nI - (Au(tn-Tnl, ultn-Tn )1n nn n nd' u nTn)

212 2c22"~K1 - 422 - Pl;'ultn-T 1 2  "K" PC~a

1 n n n nfl nn

, and so, for some constant K,, if n is sufficiently large,

V(ultnl) - 1(u(t-Tnll -K1 - 2p ( 4.33

Finally, inserting (4.30) - (4.33) into (4.29) and invoking (4.6), (4.7) (also

recall that a + -) one obtains
n

fn ((AuBu) W) lu_ul2]I dT + Q(a,Au ,t 6 2

t -T 2 nn 2n
n n

(4.34)tn
<-C ftT Iold-r

We now have both a lower bound (4.28) and an upper bound (4.34) for

Q(a,Aun,tn). The lower bound does however contain the term tU(tn-Tn)j2

which must be estimated in terms of a On . This we do in what follows.

Suppose for a moment that 2 < we 2 Then by (4.34), as Q(a,Aun,tn) • 0,
On h

and by the definition of w,

t b(O) lu_Aul2+ c2Vjul2}dT

ft - ((Au,3u) - 2
n n

tn 2 2 2 t n iu 2d~

tn-Tn tAut2 + c0plul }dr 8 ft T ATu d

which violates (1.21). Thus

a < 1/2 (4.35)
n O

for n sufficiently large. But then)1tnTn 2 e 2l 2lt Tn 2  C2 <2 .242,
Iu(tn-T nt 4 2 IA(tTn)I 2 P h 2~ P n;1/2 * (4.36)

The estimate (4.36) is now used in (4.28) to get
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(;-Q(aAu,t -1/2 c0 n + Bn[:-) - '/2

(4.37)

[cc + p C2W/+ Ya(To + b, (TO) I I 0On

for n sufficiently large where the last inequality follows from (4.6),

(4.8). Thus

Q(aAunt n ),me0 2 
n  (4.38)

Finally use this lower bound for Q in (4.34). The result violates (1.21)

and so (1.27) follows.

By (1.26), (1.27) we have

2 +
u e L ,1H)I (4.39)

Then observe that as a,b' e LIIR+ ) it follows from (1.25), (1.27), (4.39)

that

( e 2 (4.40)
def

where F (t) - F(t) - Au*a(t) - u*db(t). By (1.1)

u'(t) + Bu(t) - F1(t) . (4.41)

Form the scalar product of u and (4.41)1 then integrate over [tlt2l

t e 0 < t 2-t 1 4 1. This gives

2 2 1t

It)12- -ut)2+2t2(,ud (u,F I MT-,2 f ut ud f t1

and so by (4.39), (4.40) and as (u,Bu)) 0,

Iu(t2) 2 - JU(tl)12 <K (4.42)

for some K > 0 independent of t1, t2 0 But (4.39), (4.42) give (1.28).

Assume next that B - 3*, multiply (4.41) by Bu and integrate over

ETr tn] where t + - is such that

t
-:.- IBul 2dT ftnI- IBUI 2 dT, 1 4 t C t (4.43)t-1 n

(if no such tn  exist then (10.29) follows) and where r satisfies-n

"': -28-
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Tn e (tn-2,tn-l], u(Tn ) e D(B)

(4.*44)
IBu(T )1 4 1 + inf IBu(T)l

n

Here the inf i5 taken over T e (nt n-2 rC TC t -,uCT) e D(B)). Then, by
n n

(4.40), (4.43)

(u(tnl - 1UlTnll + 2"1 fInIBuI2 dT 0 (4.45)

n

But by (1.28) and as B a)

*(U(tn) - (ulTnl ) -21ul IBUlTil ) (4.46)

* From (4.43) - (4.46) follors

"41u (l I- IfnlU2dTnC ) C 1 + int IBulTl

+ B-I + r 2 a
ft -1 t

n n

from which the second part of (1.29) follows. To obtain the first part one

also recalls (4.40), (4.41).

PROOF OF LEMMR 4.1.

By (4.1) and as x ) I

2 1-2v
kT (v)dv K(x + kT) k 0,1,2,.. .... ,

for some constant K. Therefore

2"2!2v( + 1 !/ + +-& "2-v 1

UI g'k ,(v) dvj'/2C 4 2 ~-~ K x o+)/ 2 V (I .3~/
k'r-1 -1-vx kT x-o

But x 4 T 0?+T 2T and so x 'T ) 2- 1  This toqether with v > 3/2 yields

I '+T 2 v)dv2 !/K

for some constant K 1. But then

-29-



{/T2 1x 4 2-2 2-2Vf0 q (v) dv) Kdxx 0 T
-0t x~kT (I To x d O( 0  , 0

from which (4.3) follows.

PROOF OF LSMhN 4.2.

Let N be any integer > c and take T0  such that

Tc > ot0  (4.47)

Let T * be a sequence satisfying
n

T
fdr ,-n f d4, T t T (4.48)

Tc n 

and suppose the Lama does not hold. Then in particular

-- T
n c 0 n cST Tc_-T diO f dT

(at least for some subsequence of (T n  which without loss of generality we

take equal to (Tn) and so
Tn T

TTT0 f d 0 > (1+) ST f dr ( (4.49)
n c n c

For each n there exists tIn e [O,Tn] such that

tt f d <,ln.T_ , T+ To  n " (4.50)

t-Tc-To Jt-Tc-T0 (t n

Clearly lii t n m. By (4.49), (4.50):' n

j In f d > (I1+c1 fT-n f dT ( (4.51)

ft I-T -To T-Tcin"t n'cT0 n c

Suppose that

t -T -TfIn c 0 f dT (Cf f dT (4.52)
t -T -2T "t 1 -T -TIn c 0 in c 0

Then, by (4.50), the choice T - Tc + TO ' t n - tin would give the Lemma.

Therefore (4.52) cannot hold and so, using also (4.51)

-30-
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jln -2TO f dT > (1+0) ft -T f di )p (1+e) fTn.T f dr (4.53)

*In c 0In c 0 n c

vow repeat the last few arguments. For each n there exists tn 6 (Outin

-: such that

tTc -T0 ft2nTc7T 0 I

*observe again that lrn t2  and that t~f 4 ti -C T By (4.53), (4.54)

f2n f dr (1+6) 2 f 'n dr
t 2-T-72T Tn-c

Analagously to (4.52) now suppose that

t-T -2T tnfd
j2n c 0 f dr <e n fd
ft 2-T-c73T o t 2n-Tc-2TO

But the choice TnTc + 2T0, tn - t2n would now result in the Lemma. Hence

* 2n f3 -2T(Ic 2 dr > (1+Q) 3 r f dr
f2n c 0 O t2nTc-T 0 in T c

Proceeding in this fashion yields, remembering how N was picked,

f -~ - NTfdr > (l+e) N f Tf di > 2 f Tf d-i (4.55)
N-1,n c 0 n c n c

where -1nC But by (4.47) and (4.55)

tN-1,n f di)2 i-

N-1,n c n c

which by (4.48) cannot possibly hold. This contradiction gives the Lemma.

5. Proof of Theorem 5. Define p -lim sup Jti u)12i ndasmeta

*conclusion (1.31) does not holdl then p > 0. Recall the conclusions

2 + s
* Au e L;(a H), u e L (R HK) of Theorem 4.

* Take any n1 > 0 such that

-31-



71' 77 :7. 7- 777..7.....

b,.: ~3 (-in1 > 2 1+n) .15 1

Choose sequences T n t n m as n + m such thatN. tt
f A I l(ul1n - iM Sup It ,IAuldT, UM f T IFI dT- 0 (5.2)t -T t-b- t-T n+" tn 2T

.n n n
Define g - lal + plb'I (see definitions following (4.8)). Fix C > 0 such

P that

.- , g < 6/4 , (5.3)

o g < (%-(01, X (5.4)i,::
a 4 moo

(where the constants c0 , c, 6 appear in assumptions (1.20), (1.21)), and

such that there exists a positive integer N satisfying
S )N ) 2 1 2 (5.5)

we claim that there exist sequences (TP) (TP such that
n On

TP (' T 2T ,T -T(5)n n n On 2n'(5)

t-T tnt n Tftn  
2 Tul < L2 ftn lAul2 d-r (5.7)nt nTOn-TOn n Tn

Suppose the claim does not hold. Then in particulart -Sn n AuI2dT > L/2 n (

t -T -CT t -T";n n n n1 n

for if not take T =OT Fom (5.8) one has
n On n rm(.8 n a

t tn 2 > 21+ ) 2dt
flAuj dr > IL2 f~ JAul

t -T -CT t -T," n n n n n

however, the following is also true (otherwise take T n =1+- 1 ,

T T
On n

t -T - CT
Tan Ta 2 1 tn 2

f lAul dT > 2 f lAul drt -T -2c t -T" -C
r n n nn n

-32-



Consequently one also has

t -T-29T t-T-OT t -T

Proceeding in this fashion one arrives at

t -T -(N-I)CT 21 tn
f lAu dT 2 f, lAul dr

-T -N CT-T -(N-1)Tn n n n nn

(note that otherwise take T -T + (N-1)CT , To m ET n since by (5.5)
n n n O

Ne < we then have T e [Tn 2Tn] Ton and

tn 1u 2  2 (9

ftTNLT dT> (14/2 )Nf I~uI dT 59

But by (5.2), (5.5), (5.9)

2(1+M~lim sup ft n~ IAI n Aul d A I
t'p t-T t -2T t -T -NCT

I, t 2ft n21
> (1+L'2 )N f l Aul T > 3 j.u n IIdT 3(1,0lim u jt lAu d

n n n n n

which cannot hold by (5.1). Thus the claim (5.6), (5.7) is established. It

24+
should be noted that by the above arguments and the fact that Au e La(R ,H)

one may, without loss of generality, assume

sup IAU(tjT) (5.10)
nl<n

Let (T}n (TId be sequences satisfying (5.6), (5.7), (5.10) and define

numbers *nana On b nby

2 t tAul 2 d T, a2  nTn tAu 2 dT
n t-T an ft -.T -T ,(.1

n n ni n On

t t-

nt T Jul 2d T, b 2 fnTn T Jl di 5.2
xi n n nx n On (.2
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Then by (5.7)

a 4 /4 . (5.13)n n

Next, take the inner product of (1.1) with u and integrate over

[tn-Tn, tn]  to obtain (4.20). To estimate the convolution terms in (4.20) we

first use (5.12) and then (1.26), (5.13) to obtain

t t -T 1
nIt (u(T), f0n n b'( -s)u(s)ds)dTI 4 0b nIb'I 1 4Gu0nPIb'I . (5.14)n n

But using the fact that lul - (sup u1 U [2dT/2< we also have the
L2(R ,H) t)1

estimate

t t -T-T
Ifn nt(uMr, jonnO b' (r-s)u(s)ds)drI

" ~~ t n  t'nTn

t t -kT -T '-. Iu)I) 1/
"; EBnftn  II O b'l~s)l lulsllds12dIdT 1/2

1 -T f t-(k+l)Tn-T
n nk-1 n n On

-' t -kT -T2
<-. ,nt[ T I if n n n lb (T-s) 2 d.],/2

n n.k-1 t n -(k+l On-TOn
.:. (5.15)

t -kT -T0 212 d2 /2
I-t (k+1)Tn -T Iu(s)I ds]1  2d

•n nO

".~ ~~ ~ ul[,n+T n  x+(k+1 )T

-C 0 72u2 + i EJO n ( f 2 1 dC/2 )d1/2
TnL(R ) On k-O Jx+kT n

- o(V,, n +
ama

, where the last inequality follows from(4.3), the second part of (5.6) and from

S.the hypothesis v > 3/2 in (1.24). To estimate the other convolution term in

(4.20) observe that (using (5.11), (5.12), (5.13))

-34-
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t t -T
Ift'T (U(T), 't-T-Tna(r-')Au(u)du)drI ( ef4  RIn, ; (5.16)

iin n On

and that repeating the arguments in (5.15) yields

t -TT
IJt-Tn(ulT), fo a(S)Au(s)ds)dTI - On), n - • 15.17)

n n

From the first part of (5.6), the second part of (5.2), and from (5.12) one

has
t
fn (u,F)dI - o( ), n + ( (5.18)

n n

Returning to (4.20) and using assumption (1.20), as well as (1.23), (5.12),

(5.14) - (5.18) and the fact that Qu n,t ndb] ) 0 results in the estimate

* 1/2/2(a, ) cO - (20 ) lu(t-T )12 I/ (5.19

11 Q na, nunt - n n n
where C + 0 as n .

n

Form the inner product of (1.1) by Au and integrate over (tn-Tn, tn]

to obtain (4.29). To estimate the two convolution terms on the left-hand side

of (4.29) we argue as in the preceding paragraphs (see also the proof of

Theorem 4), and we obtain

ftn (Au,aAu + uedb)dT ) Q(a,Au ,t)
t -T nn
n n

(5.20)

-()ftnT Iu-AU I dr - 1/4 C~g + o( a n -
Tn n
n n

In addition
t

n  (F,Au)dT- o(ql), n + - .15.21)
tn n

Also observe that by (1.28) and (5.10)

def

e - inf ((u(tnl) - #u(tn-T ) > -. . (5.22)

Making use of (5.20) - (5.22) in (4.29) we obtain, after adding (c .0n)2  to
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both sides

Sn ABu) b(O) lu_Au,2 0021u12!!!U It_=dTusl
n- T 2 0uAI IcII)'~n n

(5.23)

+ Q[a,Au ,t IC -e + 0(c0)2 /4 2
nng +no1 n

where c. is the constant in (1.21).

Assume that

1. n KG2  (5.24)

where K in defined in (5.4), and also suppose that

lun a ( (5.25)
n

But (5.3), (5.24), (5.25) imply that the right-hand side of (5.23) is bounded

above by w n, where 6 is the constant in 1.21). Therefore, as

_ Qlakunitn) 0 0, we arrive at a violation of 1.21). Thus either (5.24) or

(5.25) is false. First, assume that for some subsequence

</2 0 (5.26)
n n

then (5.25) implies

lim n - - . (5.27)
n4a n

Using (5.4), (5.26), (5.27) and the fact that uS L (R ,H) to estimate the

. right-hand side of (5.19) yields (for n sufficiently large)

Q(aAu 't) P(c 0 ) 2 5.28)
n n O n

Now using (5.3), (5.25), (5.28) in (5.23) again leads to a violation of

(1.21). Thus we must have lim inf a < , and, without loss of generality,
".'n ,,w n

we let

sup a < * . (5.29)
nnn

Therefore, also by (5.24),

-36-
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sup B < m (5.30)
n

n

By (5.29) we may obviously strengthen (5.10) to

lim IAU(tn7Tn)I = i u(tn-Tn)I - 0 (5.31)
•n d n 4O

Thus e ) 0 in (5.22).

To complete the proof use e P 0 in (5.23), and recall that

Q(a,Aun,t ) 0. By (1.21), (5.3) this gives

1(c 0 n ) 2 (5.32)

But the assumption p > 0, together with (5.2), (5.32) implies

inf Bn > 0 * (5.33)

n

If (5.4), (5.31), (5.32), (5.33) are used in (5.19), one again obtains

( (5.28). Substituting (5.28) in (5.23), and using (5.3), e )'0, one obtains

a contradiction of (1.21). We thus conclude that the assumption p > 0 is

false which yields the desired conclusion 1.31) of Theorem 5.

To prove conclusion (1.32) we begin by defining F1 - F - a*Au - ufdb.

*.. By assumptions 1.15), (1.26), (1.30) and by conclusion (1.31) one has

li2 it IF1(TI 2d - 0 (5.34)

t. tf 1

Next form the inner product of 1.1) with u and integrate over the interval

" [t-T 1 ,t], IT1 1 1, to obtain (using (1.20), (1.28), (5.34))

lim sup (u(t)1 2 - t 21 - . (5.35)
t+- IT1 1 ut

Finally, combining assumption (1.26), conclusion (1.31), and (5.35) yields

conclusion (1.32) which completes the proof of Theorem 5.

6. Application to Nonlinear Heat Flow in Materials with Memory. We begin

with a formulation of the mathematical model based on the consideration of

* energy balance for heat transfer in a body B in Rn (n 1,2,3); for
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simplicity we restrict ourselves to the case n 1 and only comment on the

more general situation. If e(t,x) represents the internal energy, q(t,x)

the heat flux, and h(t,x) the external heat supply at time t and position

x e B, the energy balance states that

t - -div q + h (t > O, x e B)

Consider nonlinear heat flow in a homogeneous bar of unit length of a

material of "fading memory" type with the temperature u - u(t,x) maintained

at zero at the ends x - 0 and x - 1. According to the theory for such

materials developed by Coleman, Gurtin, Noll, Pipkin, MacCamy and Nunziato

(see eog., Coleman and Gurtin [61, Coleman and Mizel [7], Gurtin and Pipkin

[12], MacCamy (14), (15), Nunziato [18] - also Nohel [16] for a recent

summary) we assume that the history of temperature v(t,x) is prescribed for

t 4 0 and 0 < x < I with v(t,0) -v(t,1) E 0, t 0, and we assume that

the internal energy 6 and the heat flux q are functionals (rather than

functions for heat flow in ordinary materials) respectively of the

temperature u and of the gradient of u. A reasonable realization of these

functionals is

-(t,x) -co + b0 u + 1 -- b(t-T)u(T, x)d , (6.1)

q(t,x) -- X(u) - f. a(t-T)o(u (T,x))dT , (6.2)

where - < t < m, 0 < x < 1. We assume u(t,x) - v(t,x) is the prescribed

history of the temperature for t ( 0, 0 < x < 1, and that u satisfies

prescribed boundary conditions at x - 0 and x I for -m< t < in

(6.1), (6.2) > 0, b0 > 0 are given constants, a,b : [0,-) + R are

given, sufficiently smooth functions, X,O : R + R are assigned,

nondecreasing sufficiently smooth constitutive functions normalized so that

x(O) - G(0) - 0.
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In the physical literature (see e.g., Nunziato [18]) it is customary to

- define

OWt b0 + Pb(r)dr, Kc(t) -a 0 + JtaTd

as the internal energy and heat flux relaxation functions respectively; thus

* b(t) - 0'(t), a(t) - K'(t). It is then argued, partly on physical grounds,

that the equilibrium heat capacity 0(e) ) 0(0) - > 0, and that K(O) and

sc(-) are positives is also usually assumed that

a -t %t
b~t be- ,ka(t)i ae , (6.3)

k-1 k-i Ic

bk ' k' a k' %> 0. As will be seen the specific forms (6.3) are not needed

for the applications of the mathematical theory.

Letting h : R x [0,11 R denote the external heat supply, and using

energy balance (et - -div q + h), where C, q are given by (6.1), (6.2),

* shows that the temperature u is governed by the nonlinear Volterra history-

value problems

b0 p + 1 ( b(t-T)u(T,x)dT) - X(u
at at -* x

(6.4)
-+ ( atT) O(u (Tx)) d T + h(t,x)

- ~ x x

for -< t , 0 < x < 1, where

u(t,x) v(t,x), -* < t 4 0, 0 4 x 4 1 , (6.5)

where it is assumed that the history function v satisfies equation (6.4) in

some precise sense for t 4 0. If the ends of the rod are maintained at zero

temperature, we adjoin to (6.4), (6.5) the boundary conditions

u(t,0) - u(t,1) - 0, -t< t < • (6.6)

To study the evolution of the temperature in the rod for t > 0 means to find

a global extension of the history v such that (6.4) - (6.6) are satisfied
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under physically reasonable assumptions.

Upon setting

F(t,x) -h(t,x) + P0. a(t- )o(vx(T,X)) dr

(6.7)

. b-(t-r)v( T ,x)dT (0 4 t < *, 0 C x C 1)

u (X) - v(O,x), 0 < x C 1 , (6.8)
0

the history-value problem (6.4) - (6.6) reduces to the boundary-initial value

problem

bLu+ -L(b*u) -X(u )+ a*G(u )+ F (a < t < a 0 < x < ) (6.9)
0 t at xxx

u(Ox) uo(x) , 0 < x C 1 (6.10)

u(t,O) - u(t,1) 0 , 0 < t < m • (6.11)

*We shall next apply the abstract global existence, boundedness and

*f asymptotic results (Theorems 2-7) to the model problem (6.9) - (6.11).

Without loss of generality we take the constant b0 - I in (6.9).

Remark 6.1 While we will restrict the details to one space dimension, we

comment on the situation in two or three dimensions. Let Q be a bounded

domain in 311 (for heat flow n - 2 or 3) with smooth boundary r and

let u(t,x) denote the temperature at time t and x e a. in the

formulation the internal energy functional e remains unchangeds the heat

flux functional q (6.2) (now a vector in 3") becomes

q(t,x) - -(IVul)Vu - -_. a(t-T)(IVu( T,x)I)Vu( T,x)dT (6.2 n )

+t
where A, V : R + 3 are given smooth functions normalized so that

A(M) > 0, V(O) > 0, Vu is the gradient of u, I'1 denotes the Euclidean norm

in 3n , and the relaxation function a is as before. Applying the energy

balance to (6.1), (6.2n) and proceding as before, the mathematical model for

heat flow for n > 1 corresponding to (6.9) - (6.11) becomes
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at + (b'u) - Ve[A(lVu)Vu)] + a*(Vofv(lVulu)Vu).t a (6.9 n )

+ F (0 < t < a, x e £)

u(Ox) - u0 (x), x e a (6 .1 0
n )

u(t,x) - o, x e r , 0 c t < . (6.11)

The next step is to show that the problem (6.9) - (6.11) can be written

in the abstract form (1.1) and then apply the abstract theory. For this

purpose assume that the constitutive functions X, 0 satisfy the assumptions:

xa e CI (R), X(0) - G(O) = 0 ; (6.12)

there exist constants 0 > 0, N > 0 such that

0 C 0'(9) C AX'(9) < K < -• < e R (6.13)

there exist constants c1 > 0, c2 > 0 such that

-x() )c1 - a) I?, to aR . (6.14)

Define the functions R, : RR by

C(r) r f X(C)dC, E(r) J' o(g)dC, r e R (6.15)

2and the functions *• 1 • L (0,1) 4 (-m] by

-1 f0 C(L)dx if u e HI (0, 1)
(u) (6.16)

+V 0 otherwise ,

1 (Au-ldX if u e HI(0,1){(u S du1

*(u) - dx i (6.17)

otherwise

It is clear that by (6.14)
1 2  (r) 2 2

(r) - r r , r e R (6.18)

and *• I are well defined, proper, and convex by (6.13) and l.s.c. by

(6.18). Moreover, it is standard that

•d du 1 d dii 2
a(u) -- x(.), u e D(a*) - u (01), 6 L , (6.19)
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*() du e d(* du 284(u) ax - H ($ u 6 11(0.) d x~ 011. (.0

Thus the heat flow problem (6.9) - (6.11) is of the abstract form (1.1) on the

Hubet apce H- V = L(0,1) provided ye take Au, Bu as respectively

Remark 6.2. For the multidimensional problem (6 .9n) -( 6 . 1 1 nl) formulated in

Remark 6.1 asume that the constitutive functions X, V satisfy

1(0) > 0, there exists p 0 > 0 such that X(C) )o p 0  and

~A()+ (U)p 0  (c e R)

and similarly for v. Letting H -L 2 (0C) and defining

fA(j~uI)dx if u e H (S)
4(u)-

otherwise,

where M~r) - (C)dC, r e R, we find (see e.g., [16, Remark 2.4])

Bu - W4u) - -7e(J(IVal)) where

1 2
D(9#) -(u e H6 (2) : M V(IVuI)) e L (M)

the operator A is defined in the same way using the primitive of v. Thus

the problem (6 .9n) _ (6 .1 ,n) is also of the abstract form (1.1).

S it will be shown next how to apply Theorem 2 to deduce existence of

solutions of the model problem (6.9) - (6.11) using assumptions (6.12)-

(6.14). For this purpose we first check the General Assumptions. The

* conditions (1.2) 0 (.6) are satisfied with the above choice of W, H, 4and

4.To check that condition (1.7) is satisfied observe that

2 (2 2 2 22
IEu)~ A:-%''~ ) dx ) 2L 1 (.1 V L) 9-1) dx - - tAuj (6.21)

dx 92d

where we have used (6.13). since IAAUI 4 lAul, A > 0, (recall that A and

also B are assumed single-valued),

I(Du,Au)I 4C IBul IA~iuIC( IBUl lAul
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and this, together with (6.21) implies

(BuAAU)A - jBuJ2

which is of the form (1.7), vhere 0 is the constant in (6.13).

Remark 6.3. In Example 2 of [81 which is also a special case of '1.1) with

b S 0 the condition 1.7) was shown to hold with B - 0. Although B was

then linear the demonstration of this was far from trivial. The above

consideration does however show that provided we satisfy ourselves with

) 0 (which is permitted in (1.7)) then the verification of (1.7) is almost

trivial even if B is nonlinear. In fact, it is not obvious to us how (1.7)

with 5 - 0 could be verified in the case when both A and B are

nonlinear.

The compactness condition (1.8) is clearly satisfied in L2(0,1) by
(616), (6.18), from which it follows that 1#(U)l bounded implies uL

I.,, ~ dx' 2
L

bounded.

To see that the condition (1.13) is satisfied under our assumptions

observe that (6.13) implies

I Xu ,du. d 2 u 2  I I du 2( ..2 udx

(AuBu) -x - f ' ~2 dx
fo - ,,x(27o2-d2

dx (6.21)

' .:: i1 I ul2
-0 IAuI2

Also
b(0)(Au,u) 2 b(0lc 2 1u12  (6.22)

by using integration by parts, (6.14), and the Poincars inequality. A routine

calculation now shows that (1.13) is satisfied with v = Au, w - Bu if

b(O) <2 -

If all the above assumptions are satisfied, if the kernel a satisfies

conditions (a), if the kernel b satisfies assumption (1.11) (which is the
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case for the special case of a, b in (6.3) - see Proposition a in (81, also

in more general cases than (6.3)), if b(O) ) 0, and if F e W (34,H),

u 0 e D(#) tl D(#), then according to Theorem 2 the problem (6.9) - (6.11) has

a solution u satisfying the conclusions of Theorem 2 with v - Au, v - Bu.

No claim is made that this solution is unique.

To verify the applicability of Theorem 3 to the physical problem we

observe first that 1.20) is satisfied with c - c1I 2 by (6.14). From

(6.21), (6.22) now follows that (1.21) is satisfied if

M LT212 b(0) 1c2 1i1 .1- + b(0)c 0
i)ic 1w 2 2

and

(ii) b(O) < 2 -

hold. Concerning the condition (i) we note that if c2  then, an

b(0) 0, it is trivially satisfied. If c2 2 < I then ) requires P to
2 2

be sufficiently large compared to b(0).

Then under the above conditions, the conclusions of Theorem 3 hold for

solutions of (6.9) - (6.11), provided the kernels a, b satisfy (1.15)

(1.17) (trivially true for the special kernels (6.3), but also true for large

classes of other kernels), and provided F e L2 (,H).

To check the hypotheses and applicability of Theorem 4 to (6.9) - (6.11)

we note that (1.24) is trivially satisfied for the special kernels (6.3), but

is also true for many other kernels also satisfying (1.15) - (1.17). Thus one

only has to check (1.26). For this purpose we add the hypothesis

a'( M > 0 for some C > 0, e 6 R (6.23)

to (6.13)1 then

u f,-: 2 2 2
dxx

By an easy variant of Lemma A.2 in [171 (here u satisfies zero boundary
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conditions at x - 0, 1 instead of periodic boundary conditions; the mean

value of u - 0 in [17] is not used - instead use the Poincar" inequality)

one concludes

1" d22u 1 u I ,2 1 2

": 2; dx 2 ; u(x)dx

Thus lAul r ei lul if (6.23) holds, and (1.26) is satisfied with

p = (2 c') I Thus under all of our assumptions the conclusions of Theorem 4

hold for solutions of (6.9) - (6.11) if one takes F e L2(R+,H) in (6.9).

For the application of Theorem 5 we only require that F in (6.9)

" . satisfy the weak hypothesis (1.30).

For the application of Theorems 6 and 7 to the problem (6.9) - (6.11)

define F(-) - F(x) - lim F(t,x) in (6.9); we remark that for the special

case of F defined by (6.7) arising from the history-value problem (6.4),

(6.5)

F(-) - i(x) = lim h(t,x)
t4-

under our assumptions concerning the kernels a and b, where h(t,x)

represents external heat supply. Since assumption (6.14) implies that both of

the single-valued operators A, B defined by (6.19) and (6.20) are coercive

and since f0 a(t)dt > 0, the limit equation (1.33) has a unique solution

Su(-), provided Flxl e L2(0,1). To apply Theorem 6 we only impose

assumptions (1.37), these are trivial for the special cases of a, b in (6.3)

(but satisfied for more general kernels). The application of Theorem 7 is

equally routine. This completes our discussion.

Remark 6.4. It is clear from the above analysis of the model problem (6.9) -

(6.11), that a similar application of the general theory can be made to the

multidimensional problem (6 .9n) - (6 .11n) described in Remarks 6.1, 6.2.
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